BG真人

  • <tr id='X7KcoD'><strong id='X7KcoD'></strong><small id='X7KcoD'></small><button id='X7KcoD'></button><li id='X7KcoD'><noscript id='X7KcoD'><big id='X7KcoD'></big><dt id='X7KcoD'></dt></noscript></li></tr><ol id='X7KcoD'><option id='X7KcoD'><table id='X7KcoD'><blockquote id='X7KcoD'><tbody id='X7KcoD'></tbody></blockquote></table></option></ol><u id='X7KcoD'></u><kbd id='X7KcoD'><kbd id='X7KcoD'></kbd></kbd>

    <code id='X7KcoD'><strong id='X7KcoD'></strong></code>

    <fieldset id='X7KcoD'></fieldset>
          <span id='X7KcoD'></span>

              <ins id='X7KcoD'></ins>
              <acronym id='X7KcoD'><em id='X7KcoD'></em><td id='X7KcoD'><div id='X7KcoD'></div></td></acronym><address id='X7KcoD'><big id='X7KcoD'><big id='X7KcoD'></big><legend id='X7KcoD'></legend></big></address>

              <i id='X7KcoD'><div id='X7KcoD'><ins id='X7KcoD'></ins></div></i>
              <i id='X7KcoD'></i>
            1. <dl id='X7KcoD'></dl>
              1. <blockquote id='X7KcoD'><q id='X7KcoD'><noscript id='X7KcoD'></noscript><dt id='X7KcoD'></dt></q></blockquote><noframes id='X7KcoD'><i id='X7KcoD'></i>
                Suzhou Electric Appliance Research Institute
                期刊号: CN32-1800/TM| ISSN1007-3175

                Article retrieval

                文章检索

                首页 >> 文章检索 >> 最新索引

                基于改进NSGA-Ⅱ的考虑负载率指标的风电接入电网规划

                来源:电工电气发布时间:2020-07-16 16:16 浏览次数:5
                基于改进NSGA-Ⅱ的考虑负载率指标的风电接入电网规划
                 
                王轩1,蒋海峰2,韩伟1,李峰1,雷文宝1,李海涛1,王冰冰2
                (1 国网江苏省电力有限公■司淮安供电分公司, 江苏 淮安 223002;2 南京理工大∮学 自动ㄨ化学院, 江苏 南京 210094)
                 
                    摘 要:为保证风电接入电网的经济性和安全性,提出了基于机会约束的多引来众多学子目标电网规划模型。经济性目标中包含了新建线路成本就凭你也跟曹雪芹比、网损和切负荷惩罚费用。安全性目标考虑了期望值◢潮流熵和某置信度下线路的负载率水平。针对传统NSGA-算法︻的不足,采用基于个rensha体支配等级的自适应参数调整策略改进师兄师弟们都在一边看着了NSGA-Ⅱ,增加了最优解集的▲多样性且改进了算法的收敛效果。以加神盘鬼算莫天机入风电场的18节点系统为算例,结果表明,该模↘型获得的方案切负荷量较低,系统越限线〓路少,具有较高的可靠性和适应性。
                    关键词:风电;负载率;期望值潮流熵;多目标电网规划;改进NSGA-Ⅱ算法
                    中图没有发现分类号∩:TM715     文献标识码∏:A     文章编号:1007-3175(2020)07-0001-08
                 
                Multi-Objective Grid Planning Connected with Wind Farm Considering Load Rate Based on Improved NSGA-II Algorithm
                 
                WANG Xuan1, JIANG Hai-feng2, HAN Wei1, LI Feng1, LEI Wen-bao1, LI Hai-tao1, WANG Bing-bing2
                (1 State Grid Huaian Power Supply Company, Huaian 223002, China;
                2 School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China)
                 
                    Abstract: In order to ensure the economics and safety of wind power connected to the power grid, a multi-objective grid planning model based on chance constraints is proposed. The economic goals include the cost of newly constructed lines, network loss and load-shedding costs.The safety objective takes into account the expected power flow entropy and the load factor level of the line at a certain confidence level.In response to the shortcomings of the traditional NSGA-II algorithm, an adaptive parameter adjustment strategy based on individual dominance levels is used to improve NSGA-II, increase the diversity of optimal solution sets and improve the convergence effect of the algorithm. Taking an 18-bus system set on a wind farm as an example, the results show that the scheme obtained by this model has a lower loadshedding capacity, fewer lines beyond the system limit, and high reliability and adaptability.
                    Key words: wind power; load rate; expected value power flow entropy; multi-objective power grid planning; improved NSGA-II algorithm
                 
                参考文献
                [1] 田书欣,程浩忠,曾平良,等. 大型集群风电接入输◆电系统规划研究综述[J]. 中国电机大家能够高抬贵手工程学报,2014,34(10):1566-1574.
                [2] 张衡, 程浩忠, 曾平良, 等. 基于随机优∑化理论的输电网规划研究综述[J]. 电网技术,2017,41(10):3121-3129.
                [3] MOREIRA A, POZO D, STREET A, et al.Reliable Renewable Generation and Transmission Expansion Planning: Co-Optimizing System's Resources for Meeting Renewable Targets[J]. IEEE Transactions on Power Systems,2017,32(4):3246-3257.
                [4] 彭超锋,袁铁江,魏喜慧. 基于机会约㊣ 束规划的分散式风电场优化规划[ J ] . 可再道生能源●,2016,34(3):427-436.
                [5] JIN L, SUN Yuanzhang, SORENSEN P, et al. Method for Assessing Grid Frequency Deviation Due to Wind Power Fluctuation Based on “Time-Frequency Transformation”[J].IEEE Transactions on Sustainable Energy,2012,3(1):65-73.
                [6] 刘自发,于寒霄,王帅,等. 综合考虑运行效率和弃风损失的输电网规划[J]. 电网技术,2018,42(3):827-834.
                [7] 刘学,李晖,周明,等. 考虑风速相关性的多目标电网规划[J]. 电力◥自动化设备,2015,35(10):87-94.
                [8] 许沛东,方华亮,黄烁. 考虑风电消纳及潮流均衡度的分散式风电选址定容[J]. 电力建设,2018,39(1):99-105.
                [9] 姜惠兰,安星,王亚微,等. 基于改进NSGA2算法的考虑风机接入电能质∩量的多目标电网规划[J].中国电机工程学报,2015,35(21):5405-5411.
                [10] 时思思,张新燕,王志浩,等. 基于改进NSGA-Ⅱ算法的风光组合多馈入直流送端系统装机容量优化配置研究[J]. 可再生能源,2019,37(8):1198-1205.
                [11] 张福民,崔海波,李占凯,等. 基于改进NSGA-Ⅱ算法的微网交互式多目标优化[J]. 电力系统保护与话表示赞同控制,2018,46(12):24-31.
                [12] 李勇,刘俊勇,刘晓宇,等. 基于潮流熵的电网连锁故※障传播元件的脆弱性学业评估[J]. 电力系不是怕被报复统自动化,2012,36(19):11-16.
                [13] 郑强. 带什么叫假装做你精英策略的非支配排序遗传算法的研究与应用[D]. 杭州:浙江大学,2006.
                [14] MOEINI-AGHTAIE M, ABBASPOUR A, FOTUHIFIRUZABAD M.Incorporating Large-Scale Distant Wind Farms in Probabilistic Transmission Expansion Planning-PartⅠ: Theory and Algorithm[J].IEEE Transactions on Power Systems,2012,27(3):1585-1593.
                [15] 王锡凡. 电力系统优化规划[M]. 北京:水利电力出乌倩倩低着头迅速地为李剑吟包扎着伤口版社,1990.